
Tenant-Grained Request Scheduling in

Software-Defined Cloud Computing
Huaqing Tu , Student Member, IEEE, Gongming Zhao ,Member, IEEE,

Hongli Xu ,Member, IEEE, and Xianjin Fang

Abstract—Cloud providers host various services for tenants’ requests (e.g., software-as-a-service) and seek to serve as many

requests as possible for revenue maximization. Considering a large number of requests, the previous works on fine-grained request

scheduling may lead to poor system scalability (or high schedule overhead) and break tenant isolation. In this article, we design a

tenant-grained request scheduling framework to conquer the above two disadvantages. We formulate the tenant-grained request

scheduling problem as an integer linear programming and prove its NP-hardness. We consider two complementary cases: the offline

case (where we know all request demands in advance), and the online case (where we have to make immediate scheduling decisions

for requests arriving online). A normalization-based algorithm with an approximation factor of Oð1Þ is proposed to solve the offline

problem and a primal-dual-based algorithm with a competitive ratio of ½ð1� �Þ; Oðlog 3 � nþ log ð1=�ÞÞ� is designed for the online

scenario, where � 2 ð0; 1Þ and n is the number of racks in the cloud. We also discuss how to integrate our proposed algorithms with the

previous (fine-grained) request scheduling mechanism. Extensive simulation and experiment results show that our algorithms can

obtain significant performance gains, e.g., the online algorithm reduces the scheduler’s overhead more than 90% and achieves tenant

isolation, while obtaining similar network performance (e.g., throughput) compared with the fine-grained request scheduling methods.

Index Terms—Software-defined cloud, cloud computing, request scheduling, scalability, approximation

Ç

1 INTRODUCTION

CLOUD computing [1], [2], [3] has transformed a large part
of the internet industry by providing services, such as

infrastructure-as-a-service (IaaS) and software-as-a-service
(SaaS) [4], [5], making it attract more and more attention
from both academic and industry communities. The global
cloud service market is expected to grow to nearly $528:4
billion by 2022 [6]. In fact, the revenue from enterprise ten-
ants (i.e., large-scale tenants) accounts for more than 90% of
the total revenue [7]. In practice, enterprises will buy serv-
ices from SaaS cloud providers for employees. Then the
employees submit their requests to the cloud and the cloud
scheduler is responsible for scheduling requests to proper
servers [8], [9]. For clarity, each individual request repre-
sents a specific task, e.g., a model training task. Scheduling

at the granularity of individual requests is referred to as
fine-grained request scheduling,mann2017resource[11].

To pursue profit maximization, cloud providers seek to
design efficient scheduling algorithms to serve as many
requests as possible [9], [12], [13], [14]. With the help of soft-
ware-defined technology [15], the scheduler implements the
fine-grained request schedulingwith high flexibility and effi-
ciency. This problem has been widely studied in recent years
for different targets, such as saving energy [10] [16], [17] [18],
fault tolerance [9], [19] [20] and max-min fairness [21], [22],
[23]. Though fine-grained request scheduling helps maxi-
mize the system profit and achieve better resource utiliza-
tion, it still faces the following two challenges.

The first challenge is system scalability. Cloud services
have already become an essential part of our life and more
and more enterprises move their workloads to the cloud.
For example, the number of active enterprise tenants on the
Alibaba Cloud exceeds 500 thousand[24]. Even if a tenant
submits only 100 individual requests per second, the sched-
uler needs to schedule 50 million individual requests in one
second. Thus, if we perform fine-grained request schedul-
ing, it will occur a massive amount of overhead, including
scheduling decision delay and message consumption, on
the scheduler, which may encounter the risk of overload.

The second challenge is tenant isolation. In a cloud, each
tenant will generate a large number of individual requests.
To increase resource utilization, cloud providers may dis-
patch multiple individual requests to the same server [19],
nomatter which tenants they come from. The interference on
shared resources breaks tenant isolation and often leads to
security vulnerabilities. For instance, Delimitrou et al. [25]
present an application, called Bolt, that can detect the types

� Huaqing Tu, Gongming Zhao, and Hongli Xu are with the School of Com-
puter Science and Technology, University of Science and Technology of
China, Hefei, Anhui 230027, China, and also with Suzhou Institute for
Advanced Research, University of Science and Technology of China, Suz-
hou, Jiangsu 215123, China. E-mail: thq527@mail.ustc.edu.cn, {gmzhao,
xuhongli}@ustc.edu.cn.

� Xianjin Fang is with the College of Computer Science and Engineering,
Anhui University of Science and Technology, Huainan, Anhui 232000,
China. E-mail: xjfang@aust.edu.cn.

Manuscript received 4 November 2021; revised 9 August 2022; accepted 10
August 2022. Date of publication 16 August 2022; date of current version 2
September 2022.
This work was supported in part by the National Science Foundation of China
under Grants 62132019 and 62102392, in part by the Open Research of Proj-
ects of Zhejiang Lab under Grant 2022QA0AB04, and in part by the Natural
Science Foundation of Jiangsu Province under Grant BK20210121.
(Corresponding author: Gongming Zhao.)
Recommended for acceptance by J. Zhai.
Digital Object Identifier no. 10.1109/TPDS.2022.3199031

4654 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4051-5554
https://orcid.org/0000-0003-4051-5554
https://orcid.org/0000-0003-4051-5554
https://orcid.org/0000-0003-4051-5554
https://orcid.org/0000-0003-4051-5554
https://orcid.org/0000-0003-1311-8908
https://orcid.org/0000-0003-1311-8908
https://orcid.org/0000-0003-1311-8908
https://orcid.org/0000-0003-1311-8908
https://orcid.org/0000-0003-1311-8908
https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0002-3894-2007
https://orcid.org/0000-0002-3894-2007
https://orcid.org/0000-0002-3894-2007
https://orcid.org/0000-0002-3894-2007
https://orcid.org/0000-0002-3894-2007
mailto:thq527@mail.ustc.edu.cn
mailto:gmzhao@ustc.edu.cn
mailto:xuhongli@ustc.edu.cn
mailto:xjfang@aust.edu.cn

and characteristics of applications sharing a server. The test-
ing results show that Bolt can correctly identify the character-
istics of 385 out of 436 diverse workloads on Amazon Web
Services [25]. Leveraging this information, malicious tenants
can enable a wide spectrum of network attacks, including
denial of service attacks (DoS) [26] and co-residency attacks
[27] with high success probability [25]. Thus, without consid-
ering tenant isolation, once a tenant generates malicious
requests, it may affect the security of other tenants sharing
resources on the same server.

To overcome the above challenges, in this paper, we
intend to schedule requests at the tenant granularity (i.e.,
coarse-grained request scheduling) and try to make each
server only serve requests of one tenant for better scalability
and tenant isolation. Specifically, from the perspective of
the cloud provider, if a tenant generates a set of individual
requests, e.g., submitting multiple requests for training
deep neural networks at the same time, these requests from
the same tenant can be treated as a tenant-grained request.
Since the number of tenants is much smaller than the num-
ber of individual requests, tenant-grained request schedul-
ing can reduce the schedule overhead, thereby improving
the system scalability. Moreover, since most large-scale
enterprise tenants require far more resources than one
server, we try to allocate the resources of each server to only
one tenant for purpose of tenant isolation. Through exten-
sive simulations, the performance gap between tenant-
grained request scheduling and fine-grained request sched-
uling is within 3%, but tenant-grained request scheduling
method can improve the security of tenants through tenant
isolation and reduce the scheduling overhead by more than
90% (i.e., achieving better system scalability).

One may think that the existing scheduling algorithms
[9], [12], [14], [16] for individual requests may be extended
to implement tenant-grained request scheduling with some
small modifications. However, it is not the case. Specifically,
existing fine-grained request scheduling methods usually
assume that each server can provide services for multiple
individual requests. Thus, it can be modeled as a bin pack-
ing problem in which the bins and items correspond to the
servers and individual requests, respectively [9], [12], [16].
However, in many practical scenarios, e.g., enterprise-ori-
ented SaaS cloud [8], large-scale multi-tenant GPU clusters
[28] and big data analysis cloud [29], the resources
requested by one tenant may exceed the capacity of a single
server. In other words, we may need to allocate several serv-
ers for one tenant-grained request. Thus, tenant-grained
request scheduling is fundamentally different from fine-grained
request scheduling. Moreover, since the power or bandwidth
overload in a rack will affect the performance of the cloud (
will be explained in detail in Section 2.3), this paper also
considers the bandwidth and power constraints of the racks,
which will make the problem far from trivial.

In this paper, we study the problem of tenant-grained
request scheduling in software-defined cloud. To the best of
our knowledge, this is the first work to schedule tenant-
grained requests that require exclusive use of multiple serv-
ers while considering the bandwidth/power constraints on
racks. With the help of tenant-grained request scheduling,
we can significantly improve the system scalability and ten-
ant security in the software-defined cloud. Note that, the

proposed tenant-grained request scheduling algorithm can
also be used in conjunction with the existing fine-grained
scheduling algorithms, which will be discussed in Sec-
tion 3.3. The main contributions of this paper are as follows:

1) We define the problem of tenant-grained request
scheduling (TRS) in the software-defined cloud and
prove its NP-hardness.

2) We present a normalization-based offline algorithm
for the TRS problem, which guarantees that the max-
imum bandwidth load on any rack will not exceed
the optimal solution by a factor of 3.3, and the allo-
cated server and power resources will not exceed the
rack’s capacity by a factor of 3.3.

3) We propose an online algorithm based on the pri-
mal-dual method for TRS. The proposed algorithm
can achieve ½ð1� �Þ; Oðlog 3 � nþ log ð1=�ÞÞ� competi-
tiveness, where � is an arbitrary positive value and n
is the number of racks.

4) We show the high efficiency of the proposed algo-
rithms through extensive simulations. For example,
the online algorithm can reduce the schedule over-
head more than 90%, while achieving tenant isolation,
compared with the fine-grained request scheduling
methods.

The rest of this paper is organized as follows. Section 2
introduces preliminaries and the definition of tenant-
grained request scheduling. In Section 3, we propose an off-
line normalization-based tenant-grained request scheduling
algorithm for the offline scenario. In Section 4, we design an
online primal-dual request scheduling algorithm for the
online scenario and analyze its approximate performance.
Section 5 presents the extensive simulation and experiment
results of the proposed algorithms, which show the supe-
rior performance of the tenant-grained request schedul-
ing method. Section 6 reviews the related works. Section 7
concludes the paper.

2 PRELIMINARIES

2.1 A Motivation Example

In this section, we give a motivation example to illustrate
the contrast between fine-grained request scheduling and
tenant-grained request scheduling. In this example, the
cloud consists of a scheduler and four servers, as shown in
Fig. 1. The resource capacity of each server is set as 10.
Besides, there are two tenants marked with different colors,
and each tenant submits six individual requests. We use
numbers from one to twelve to label all individual requests,
and “individual request” is abbreviated as “IR” in Fig. 1 for
simplicity. The corresponding resource (e.g., CPU) demand
of each individual request is marked after it.

If we perform the fine-grained request scheduling
method [9], which selects a server with the least load, the
scheduling results are shown in Fig. 1a. Specifically, indi-
vidual requests 1/7/11 are scheduled to server 1; requests
2/8/12 are scheduled to server 2; requests 3/5/9 are sched-
uled to server 3; requests 4/6/10 are scheduled to server 4.
From the scheduling results in Fig. 1a, we can get the fol-
lowing two observations: 1) For each individual request, the
fine-grained request scheduling method needs to make a

TU ETAL.: TENANT-GRAINED REQUEST SCHEDULING IN SOFTWARE-DEFINED CLOUD COMPUTING 4655

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

scheduling decision and select a server among all servers in
the system to handle it. When the number of individual
requests is too large, the fine-grained request scheduling
will cause high scheduling overhead, thereby reducing sys-
tem scalability. 2) The individual requests of each tenant are
distributed among all servers, and each server is shared by
these two tenants, resulting in poor tenant isolation. A mali-
cious tenant may attack the servers assigned to it, affecting
other normal tenants.

These two observations make us think: Can we design a
request scheduling method with low scheduling overhead and
high tenant isolation? To this end, we propose the tenant-
grained request scheduling method in this paper. This
method first aggregates the individual requests from the
same tenant into a tenant-grained request, then performs the
proposed tenant-grained request scheduling algorithms
(introduced in Sections 3 and 4) to allocate servers for each
tenant-grained request. Fig. 1b exhibits the scheduling results
of tenant-grained request scheduling. Since the number of
tenants is much smaller than that of individual requests, ten-
ant-grained request scheduling can greatly reduce schedul-
ing overhead. Moreover, the scheduler tries to assign an
entire server to a tenant-grained request for tenant isolation.
Specifically, the former two servers are assigned to tenant 1,
and the latter two servers are assigned to tenant 2. In this
way, tenant-grained request scheduling can reduce schedul-
ing overhead and guarantee tenant isolation. One may think
that tenant isolation reduces resource utilization. However,
the simulation results in Section 5 show that the tenant-
grained request scheduling has a limited impact on the
resource utilization of large-scale tenants. The discussion in
Section 3.3 introduces how to improve the resource utiliza-
tion of small-scale tenants.

2.2 Application Scenarios for Tenant-Grained
Request Scheduling

We give some examples to illustrate that our algorithm can
be applied tomultiple scenarios. 1) Inmulti-tenant GPU clus-
ters [28], tenants rent GPUs to train their models. GPUs rep-
resent a monolithic resource that cannot be shared at a fine
granularity across users, which means that a GPU can only
be used by one tenant at any time [28]. Our algorithm can be
used to allocate GPUs to tenants. 2) For large-scale enterprise

users, they purchase SaaS products (e.g., online video and
group call conference) [7] from cloud service providers to
facilitate enterprise management. Our algorithm can sched-
ule requests at the granularity of tenants to improve the scal-
ability of the scheduler. 3) In an enterprise’s data center, such
as Facebook [30], some servers process requests from Insta-
gram users, and some servers process requests from What-
sApp users. With the help of our algorithm, the scheduler
can implement request schedulingwith low overhead.

2.3 System Model

Cloud Infrastructure Model: A software-defined cloud usually
consists of multiple server racks K ¼ fk1; k2; :::; kng, with
n ¼ jKj. Let Ck represent the number of servers in rack k 2
K. Since most of the servers are purchased at the same time
by cloud service providers, the hardware specifications of
servers in the cloud are similar and servers in a rack usually
support the same service [31]. The assumption of server iso-
morphism is adopted by previous work like [32], [33]. Thus,
we assume that all servers have similar hardware specifica-
tions and the services provided by the servers in the same
rack are homogeneous. The heterogeneous scenario that the
servers in the same rack have different hardware specifica-
tions will be studied in the future. The cloud provides a set
of services S ¼ fs1; s2; :::sjSjg for tenants. We use Ks to rep-
resent the set of racks with service s 2 S.

We consider two resource constraints for a rack, band-
width constraint and power constraint, respectively. First, to
realize the communication between servers, each rack is
equipped with a Top-of-Rack (ToR) switch [34], [35]. The
traffic in and out of a rack needs to pass through the ToR
switch, whose bandwidth capacity will significantly impact
the throughput of a rack. Thus, we should consider the band-
width capacity constraints of racks and such bandwidth
capacity of rack k is denoted as Bk. Second, the power con-
sumption of a rack is related to the load of servers on this
rack and the power supply of each rack is also limited. If we
schedule power-consuming requests that require a lot of
computing resources to the servers in the same rack and the
power load of the rack exceeds its power capacity, all servers
in this rack will be affected, and the hardware may even be
damaged [36], so the power capacity constraints of racks can-
not be ignored. LetEk represent the power capacity of rack k.

Fig. 1. Motivation Example. A tiny cloud consists of a scheduler and four servers. The resource capacity of each server is set as 10. There are two
tenants, and each tenant submits six individual requests. We use numbers from one to twelve to label all individual requests, and “individual request”
is abbreviated as “IR” in Fig. 1 for simplicity. The corresponding resource (e.g., CPU) demand of each individual request is marked after it. Fig. 1(a)
and 1(b) show the scheduling results of fine-grained request scheduling and tenant-grained request scheduling, respectively.

4656 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

Multi-Tenant Model: We consider a set of tenants renting
various services from cloud providers and such tenant set is
denoted as T ¼ ft1; t2; :::; tmg, wherem is the number of ten-
ants. In practice, a tenant t 2 T usually generates a great
number of individual requests with different service
requirements, especially for enterprise tenants. For clarity,
we will regard all individual requests generated by the
same tenant as a tenant-grained request in this paper. For ease
of reference, the key notations used in this paper are sum-
marized in Table 1.

2.4 Definition of Tenant-Grained Request
Scheduling

This section provides a more precise description of the
Tenant-grained Request Scheduling (TRS) problem. We
aggregate all requests from the same tenant ti into a ten-
ant-grained request, denoted as ri. Let R ¼ fr1; r2; :::rmg
represent the tenant-grained request set. Each tenant-
grained request r may require multiple types of services
with different resource requirements. The actual resource
consumption of requests will be collected by the system as
historical information to assist request scheduling. Using
historical information, the scheduler can evaluate the
resource demand of each request based on service type
and collected historical information [11]. Specifically, we
use psðrÞ to represent the number of servers with service s
required by request r. Let bsðrÞ and esðrÞ denote the band-
width demand and power demand of request r for service
s, respectively. We schedule each request on servers as
evenly as possible through ECMP. Thus, for any request
r 2 R and service s 2 S, the power and bandwidth con-
sumption will be evenly distributed on the allocated serv-
ers. That is, each allocated server of service type s for
request r needs to consume bandwidth resource of bsðrÞ

psðrÞ
and power resource of esðrÞ

psðrÞ . High traffic volume leads to

long queuing delay of data packets inside the ToR switch,
thereby reducing the data transmission rate. Therefore, we
take the bandwidth load balancing among ToR switches as
the optimization goal. We formulate the TRS problem as
follows:

min �

S:t:

P
k2Ks

ykr ¼ psðrÞ; 8r 2 R; s 2 SP
r2R ykr � Ck; 8k 2 KP
r2R ykr � esðrÞpsðrÞ � Ek; 8k 2 Ks; s 2 SP
r2R ykr � bsðrÞpsðrÞ � � �Bk; k 2 Ks; s 2 S

ykr 2 f0; 1; 2:::g; 8r 2 R; k 2 K

8>>>>>>>><
>>>>>>>>:

(1)

Note that ykr means the number of servers assigned to
request r on rack k. The first set of equations denotes that
each request r needs to be allocated with psðrÞ servers of ser-
vice type s. The second set of inequalities denotes the con-
straints of the number of servers in each rack k. The third
and fourth sets of inequalities means the power capacity
constraint and bandwidth constraint in each rack, respec-
tively. Our objective is to achieve bandwidth load balancing
among ToR switches on racks, this is, min �.

Theorem 1. The TRS problem is NP-hard.

To prove this theorem, we first give the definition of
identical parallel machines scheduling problem.

Definition 1 (Identical Parallel Machines Scheduling
(IPMS)[37]). Given p parallel machines and q independent
jobs, each job is to be assigned to one of the machines. All the
parallel machines are identical in terms of their processing
speed. Thus, every job will take the same amount of processing
time on each machine. The objective is to find a schedule that
minimizes the makespan.

Proof. We prove NP-hardness of the TRS problem through
a reduction from the IPMS problem. It means that TRS
cannot be solved in deterministic polynomial time unless
P = NP. Consider an instance of the IPMS problem: let
M ¼ fm1;m2; :::; mpg be a set of machines and J ¼
fj1:j2; :::; jqg be a set of jobs. Moreover, the processing
time of job j 2 J on an arbitrary machine is denoted as tj.
Now, we construct a special case of the TRS problem, in
which each rack has unlimited resources, including
power and bandwidth, and is equipped with enough
servers. Under this case, the IPMS problem with the
objective of minimizing the makespan is equivalent to
the TRS problem with the objective of bandwidth load
balancing among racks. Specifically, each machine m
and job j can be regarded as a rack k and request r,
respectively. The makespan on each machine can be
regarded as the bandwidth load on each rack. Appar-
ently, the reduction process above can be finished in
polynomial time, since the IPMS problem is equivalent
to the TRS problem under the special case. Note that the
IPMS problem is a well-known NP-hard problem. Since
IPMS is reducible to the special case of TRS, our TRS
problem is NP-hard as well.pt?> tu

3 OFFLINE ALGORITHM DESCRIPTION

In this section, we propose an offline normalization-based
request scheduling algorithm, called NTRS. Then we ana-
lyze the approximation performance of the NTRS algorithm.

TABLE 1
Key Notations for Problem Definition

Parameters Description

K a rack set
n the number of racks
Ck the number of servers in rack k 2 K
Bk the bandwidth capacity of rack k 2 K
Ek the power capacity of rack k 2 K
S a network service type set
Ks the set of racks with service type s 2 S
T a tenant set
R a tenant-grained request set
psðrÞ the number of servers with service s 2 S

required by request r 2 R
bsðrÞ the bandwidth demand of request r 2 R for

service s 2 S
esðrÞ the power demand of request r 2 R for service

s 2 S
ykr the number of servers assigned to request r 2

R on rack k 2 K

TU ETAL.: TENANT-GRAINED REQUEST SCHEDULING IN SOFTWARE-DEFINED CLOUD COMPUTING 4657

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

3.1 Algorithm Description

Due to the NP-hardness, it is difficult to optimally solve the
TRS problem in polynomial time. This section presents a
normalization-based tenant-grained requests scheduling
algorithm, called NTRS, to solve the TRS problem. The basic
idea of NTRS is to divide each tenant-grained request r 2 R
into

P
s2S psðrÞ subsets, each of which is called unit request

and occupies one server. Let Ms
r denote the set of unit

requests of request r that requires service s 2 S. Obviously,
jMs

r j ¼ psðrÞ; 8r 2 R; s 2 S. Let Ms denote the unit request
set that requires service s 2 S, i.e.,Ms ¼ S

r2RM
s
r . The total

unit requests from all tenant-grained requests are denoted
by M, i.e., M ¼ S

s2SM
s. Each unit request m 2 Ms

r

requires the same resource consumptions, that is, a single
server with the bandwidth of bsðrÞ

psðrÞ and power of esðrÞ
psðrÞ . For

ease of reference, we summarize the main notions used in
the NTRS algorithm in Table 2.

The proposed NTRS algorithm mainly consists of two
steps. The first step normalizes the resource requirements for
each unit requestm 2 M on different racks. Specifically, if we
allocate one server on rack k 2 K for a unit requestm 2 Ms

r , it
will consume some server/power/bandwidth resources of
this allocated rack. Thus, let bsr;k, e

s
r;k and csr;k be the normal-

ized bandwidth, power and server consumption of rack k,
respectively, if one of the servers in rack k is allocated to the
unit request in set Ms

r . These normalized resource require-
ments can be calculated as follows:

bsr;k ¼
bsðrÞ=psðrÞ

Bk � e� ; esr;k ¼
esðrÞ=psðrÞ

Ek
; csr;k ¼

1

Ck
: (2)

By replacing ykr 2 f0; 1; 2:::g with ykr 2 ½0; Cmax
k � at the last

line in Eq. (1), we can obtain the linear program LP1 of
Eq. (1), where Cmax

k is the maximum number of servers
placed in a rack, that is, Cmax

k ¼ maxfCk; 8k 2 Kg. e� is the
solution of LP1, which can be solved in polynomial time. Let
�� be the optimal solution of integer linear program Eq. (1). e�
is the lower bound of ��, that is, e� � ��, since LP1 relaxes the

value range of variable ykr . Since
e� is extremely close to the

optimal solution ��, we use e� to replace �� in the following.
Note that, if request r 2 R does not need the support of ser-
vice s 2 S or servers in rack k does not support service s, we
have bsr;k ¼ esr;k ¼ csr;k ¼ 0. According to the normalized
resource consumption in Eq. (2), we estimate the bottleneck
resource when a unit requestm 2 Ms

r is scheduled on rack k.
Specifically, for each rack k 2 Ks : s 2 S, we can divide the
unit request set Ms into three subsets M1

k , M
2
k and M3

k . Unit
requests in M1

k , M
2
k and M3

k require more normalized band-
width, power and server resources than the other two types
of normalized resources, respectively. In other words, for
each rack k 2 Ks : s 2 S, we divide unit requests set Ms into
three subsets as follows:

M1
k ¼ fmjbsr;k � esr;k; b

s
r;k � csr;k;m 2 Ms

r ; r 2 Rg
M2

k ¼ fmjesr;k � bsr;k; e
s
r;k � csr;k;m 2 Ms

r ; r 2 Rg
M3

k ¼ fmjcsr;k � bsr;k; c
s
r;k � esr;k;m 2 Ms

r ; r 2 Rg

8><
>: : (3)

The second step of NTRS allocates resources for each unit
request according to the normalized resource consumptions.
We use Bi

k, E
i
k and Ci

k to denote the cumulative normalized
bandwidth, power and server consumption generated by
unit requests in Mi

k, i 2 f1; 2; 3g, when they are assigned to
rack k, respectively. We rank racks in Ks with the increasing
order of their bandwidth load. For each rack k 2 Ks, if 1)m 2
M1

k and B1
k < 1 or 2) m 2 M2

k and E2
k < 1 or 3) m 2 M3

k and
C3

k < 1, NTRS schedules the unit request m to the server in
rack k and updates the corresponding cumulative value. The
NTRS algorithm is formally described in Algorithm 1.

Algorithm 1.NTRS: Normalization-Based Tenant-Grained
Request Scheduling

1: Step 1: Normalizing the resource demand
2: for each tenant-grained request r 2 R do
3: for each service s 2 S do
4: Devise unit request setMs

r

5: Construct a linear program LP1 of Eq. (1) by replacing ykr 2
f0; 1; 2:::gwith ykr 2 ½0; Cmax

k �
6: Obtain the optimal solution �� of LP1

7: for each tenant-grained request r 2 R do
8: for each rack k 2 Ks : s 2 S do
9: Normalize the server demand csr;k, power demand

esr;k and bandwidth demand bsr;k with Eq. (2)
10: for each rack k 2 Ks : s 2 S do
11: Divide the unit requests inMs into three setsM1

k ,M
2
k and

M3
k with Eq. (3)

12: Step 2: Allocating Resources for Unit Requests
13: for each request r 2 R and each service type s 2 S do
14: for each unit requestm 2 Ms

r do
15: Rank racks in set Ks with the increasing order of

bandwidth load
16: for each k 2 Ks do
17: ifm 2 M1

k and B1
k < 1 then

18: Allocate resources for unit requestm
19: else ifm 2 M2

k and E2
k < 1 then

20: Allocate resources for unit requestm
21: else ifm 2 M3

k and C3
k < 1 then

22: Allocate resources for unit requestm
23: if unit requestm is allocated successfully then
24: Break

TABLE 2
Key Notations for the NTRS Algorihtm

Parameters Description

Ms
r the unit request set of tenant-grained request r

that requires service s 2 S
Ms the set of unit requests that requires service s 2 S
M the unit requests of all tenant-grained requests
bsr;k the normalized bandwidth resource required by

request r for service s
esr;k the normalized power resource required by

request r for service s
csr;k the normalized server resource required by

request r for service s
M1

k the set of unit requests that require more
normalized bandwidth resources than the other
two types of normalized resources

M2
k the set of unit requests that require more

normalized power resources than the other two
types of normalized resources

M3
k the set of unit requests that require more

normalized server resources than the other two
types of normalized resources

4658 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

3.2 Performance Analysis of NTRS

This section analyzes the approximation performance of the
proposed NTRS algorithm. By the definition in Eq. (3), we
have the following lemma:

Lemma 2. At any time in the execution of Algorithm 1, for the
cumulative load from the unit requests in M1

k on rack k 2 K,
we have E1

k � B1
k, C

1
k � B1

k. For the cumulative load from the
unit requests in M2

k on rack k 2 K, we have B2
k � E2

k , C
2
k �

E2
k . For the cumulative load from the unit requests in M3

k on
rack k 2 K, we have B3

k � C3
k , E

3
k � C3

k .

Proof. On the one hand, by the definitions of M1
k in Eq. (3),

we know that unit requests in set M1
k require more nor-

malized bandwidth resources than the other two types of
normalized resources. On the other hand, E1

k , B
1
k and C1

k

denote the cumulative bandwidth, power and server con-
sumption generated by unit requests that are in M1

k and
assigned to rack k, respectively. Thus, we derive E1

k � B1
k,

C1
k � B1

k. We can derive the other two conclusions in a
similar way. tu
Let constant h denote the number of servers that a rack

can contain at least (and meet the power and bandwidth
requirements). In other words, h ¼ minf 1

bs
r;k
; 1
es
r;k
; 1
cs
r;k
; 8r 2 R;

k 2 Ks; s 2 Sg.
Lemma 3. During the running of the NTRS algorithm, We have

maxfBi
k; E

i
k; C

i
k; i 2 f1; 2; 3g; k 2 Kg � 1þ 1

h .

Proof. We prove this lemma by induction on the number
of unit requests. At the beginning of the NTRS algo-
rithm, Lemma 3 is certainly satisfied. We assume that
this lemme can hold before scheduling to a unit request
m 2 Ms

r . Let k 2 Ks be the rack in which a server is allo-
cated for unit request m. Unit request m may belong to
any one of M1

k , M
2
k and M3

k . Since these three cases are
similar, we discuss the case where unit request m belong
to M1

k .

When m 2 M1
k , before scheduling, B1

k � 1 (otherwise
unit request m would not be scheduled on rack k). After
scheduling, its cumulative bandwidth load is B1

k �
1þ bsr;k. According to Lemma 2, E1

k � 1þ bsr;k and C1
k �

1þ bsr;k. The other two cases can be discussed similarly.
Thus, after scheduling unit requestm 2 Ms

r , we have

maxk2K max B1
k; E

1
k; C

1
k

� �� � � 1þ bsr;k

maxk2K max B2
k; E

2
k; C

2
k

� �� � � 1þ esr;k

maxk2K max B3
k; E

3
k; C

3
k

� �� � � 1þ csr;k

8>><
>>: (4)

With the definition of h, Lemma 3 is proved. tu
Theorem 4. The proposed NTRS algorithm guarantees that the

maximum bandwidth load on any rack k 2 K will not exceed
the optimal solution by a factor of 3 � ð1þ 1

hÞ, and the allocated
server and power resources will not exceed the rack’s capacity
by a factor of 3 � ð1þ 1

hÞ.
Proof. We use a variable nkr to denote the number of servers

that have been allocated for request r 2 R on rack k 2 K.
According to Lemma 3, on any rack k 2 Ks : s 2 S, the
bandwidth load factor is as follows

X
r2R

nkr � bsr;k

¼
X
r2M1

k

nkr � bsr;k þ
X
r2M2

k

nkr � bsr;k þ
X
r2M3

k

nkr � bsr;k

¼ B1
k þB2

k þB3
k � 3 �

�
1þ 1

h

�

According to Eq. (2), it follows

X
r2R

nkr �
bsðrÞ=psðrÞ
BðkÞ � �� � 3 �

�
1þ 1

h

�

Then, we have

X
r2R

nkr �
bsðrÞ=psðrÞ

BðkÞ � 3 �
�
1þ 1

h

�
� ��

Thus, the maximum bandwidth load factor on each rack
will not exceed 3 � ð1þ 1

hÞ times as the optimal solution.
Similarly, the allocated server and power resources will
not exceed the rack’s capacity by a factor of 3 � ð1þ 1

hÞ. tu
To deal with the situation where the resource constraints

are violated, we can greedily remove the requests whose
resource requirements are not satisfied from racks and serv-
ers until all resource constraints are not violated. In a request
scheduling system, there is a queue for those requests wait-
ing to be scheduled [29]. The removed request can re-enter
the queue and wait for the next scheduling opportunity
when there are enough resources.

Approximation factor: Following our analysis, by schedul-
ing all requests, the NTRS algorithm can guarantee that the
bandwidth load on any rack will not exceed the optimal
solution by a factor of 3 � ð1þ 1

hÞ. Similarly, the resource con-
straints will not be violated by a factor of 3 � ð1þ 1

hÞ. This is
also called bi-criteria approximation [38], [39], [40]. In a data
center, a rack usually contains at least ten servers and pro-
vide bandwidth and power resources for these ten servers.
Under this case, h � 10 holds and we have 3 � ð1þ 1

hÞ � 3:3.
That is, the maximum bandwidth load through the NTRS
algorithm on any rack will not exceed the optimal solution
by a factor of 3.3, and the resource constraint will not be vio-
lated by a factor of 3.3 at most in many practical situations.
In other words, our NTRS algorithm can achieve almost the
constant bi-criteria approximation for the offline TRS prob-
lem in many practical situations.

Algorithm Running Example: For simplicity, we assume
that there are two racks (k1 and k2), and four servers in each
rack. All servers provide the same service (say, s). In addi-
tion, the bandwidth capacity and power capacity of each
rack are set to 10 and 8, respectively. The resource demand
of a tenant-grained request is represented by 3-tuple, i.e.,
(server’s number, bandwidth demand, power demand). We
assume that there are total three tenant-grained requests:
r1 ¼ ð2; 4; 5Þ, r2 ¼ ð2; 5; 4Þ and r3 ¼ ð3; 6; 6Þ.

Following lines 2-4 of the NTRS algorithm described in
Algorithm 1, we divide each tenant-grained request into a
set of unit requests. Let Ms

r be the unit request set of tenant-
grained request r and each unit request is also be represented
as mr ¼ (server’s number, bandwidth demand, power
demand). Thus, we have Ms

r1
¼ fm1

r1
¼ ð1; 2; 2:5Þ; m2

r1
¼

TU ETAL.: TENANT-GRAINED REQUEST SCHEDULING IN SOFTWARE-DEFINED CLOUD COMPUTING 4659

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

ð1; 2; 2:5Þg, Ms
r2
¼ fm1

r2
¼ ð1; 2:5; 2Þ; m2

r2
¼ ð1; 2:5; 2Þg and

Ms
r3
¼ fm1

r3
¼ ð1; 2; 2Þ; m2

r3
¼ ð1; 2; 2Þ; m3

r3
¼ ð1; 2; 2Þg.

According to lines 5-6, we set Cmax
k as 4 and solve the linear

program version of Eq. (1) by replacing ykr 2 f0; 1; 2; :::gwith
ykr 2 ½0; Cmax

k �. We obtain �� ¼ 0:75. Following lines 7-9, we
normalize the resource requirements of all unit requests
using Eq. (2). The unit requests inMs

r1
,Ms

r2
andMs

r3
are nor-

malized into (0.25, 0.26, 0.3125), (0.25, 0.33, 0.25) and (0.25,
0.26, 0.25), respectively. Then we divide unit requests into
three subsets according to Eq. (3) for each rack. For rack k1,

we have M1
k1

¼ fm1
r2
;m2

r2
;m1

r3
;m2

r3
;m3

r3
g, M2

k1
¼ fm1

r1
;m2

r1
g

and M3
k1

¼ ;. Similarly, for rack k2, we have M1
k2

¼ fm1
r2
;

m2
r2
;m1

r3
;m2

r3
;m3

r3
g,M2

k2
¼ fm1

r1
;m2

r1
g andM3

k2
¼ ;. Now, we

follow lines 13-24 in Algorithm 1 to allocate resources for
each unit request. We start from unit requests belonging to
tenant-grained request r1. The sequence of racks sorted
according to bandwidth load is ½k1; k2�. Since m1

r1
2 M2

k1
and

the cumulative power load B2
k1

< 1, a server in k1 will be
assigned to m1

r1
. Then, B2

k1
, E2

k1
and C2

k1
are updated to 0.26,

0.3125, 0.25. The sequence of racks sorted according to band-
width load is updated to ½k2; k1�. Since m2

r1
2 M2

k2
and the

cumulative power load B2
k2

< 1, a server in k2 will be
assigned to m2

r1
. Similar to the steps above, we allocate serv-

ers for the unit requests of tenant-grained requests r2 and r3.
The final scheduling result is as follows: m1

r1
, m1

r2
, m1

r3
and

m2
r3
are scheduled on rack k1;m

2
r1
,m2

r2
andm3

r3
are scheduled

on rack k2. That is, one server on each of racks k1 and k2 is
assigned to the tenant-grained request r1. One server on each
of racks k1 and k2 is assigned to r2. Two servers on rack k1
and one server on rack k2 are assigned to r3.

3.3 Discussion

We give the following discussion to enhance the applicabil-
ity and practicality of our proposed algorithm.

Dealing with Small-scale Tenants: For small-scale tenants,
tenant isolation requirement may reduce resource utilization.
To deal with the waste of resources caused by small-scale ten-
ants, we use the following steps to achieve the trade-off
between resource utilization and tenant isolation. Specifically,
in the first step, we calculate the resource utilization of each
small-scale tenant. Let ut be the number of servers allocated
to the tenant-grained request of tenant t. Let u0

t be the mini-
mum number of servers ideally consumed by tenant t, which
can be a decimal. The ideal minimum number of servers
required by a tenant is obtained by calculation. The scheduler
evaluates the resource demand of each tenant based on ser-
vice type. u0

t is calculated through dividing the total resource
requirements by the resource amount owned by a server. The
resource utilization of tenant t can be formulated as u0t=ut. In
the second step, we pick out those tenantswhose resource uti-
lization is below a threshold, then aggregate the individual
requests from these tenants into a new tenant-grained
request. It should be noted that there is a trade-off between
resource utilization and tenant isolation in this step. Themore
tenants’ individual requests are aggregated, the higher the
resource utilization, but the lower the tenant isolation. The
threshold for aggregating the individual requests from small-
scale tenants is obtained by experience. System administra-
tors can set the threshold according to experience based on
historical data such that the resource utilization is improved

while ensuring proper tenant isolation. At the last step, we
can perform tenant-grained request scheduling algorithms
proposed in Sections 3 and 4 to allocate resources for the
aggregated requests. In a request scheduling system, there is
a queue for requests to be scheduled [29]. Under the online
scheduling scenario, the aggregated objects are currently
queued requests submitted by tenants.

Combining With Fine-Grained Request Scheduling. We
should note that the fine-grained request scheduling algo-
rithm can be used as a complementary scheme of our tenant-
grained request scheduling algorithm. Specifically, we first
use our proposed algorithm for scheduling tenants’ traffic.
Under this case, some servers may be under-utilization. To
improve the resource utilization on some servers, we can
schedule some requests individually in a fine-grained man-
ner, e.g., scheduling an individual request from one server to
another. Section 5.2.4 conduct a set of simulations for the
combination of tenant-grained request scheduling combined
and fine-grained request scheduling. It shows that, com-
bined with fine-grained request scheduling, tenant-grained
request scheduling can achieve similar system throughput
performance to using only fine-grained request scheduling.

4 ONLINE ALGORITHM DESCRIPTION

4.1 Problem Definition

For each arrival tenant-grained request, the scheduler will
construct a set of scheduling schemes. Now we use an
example to illustrate the scheduling scheme. Assume that
there are two racks fk1; k2g and a tenant-grained request r 2
R which needs two servers. One of the scheduling schemes
is that two servers on rack k1 are allocated for request r,
which is represented as ½ðk1; 2Þ�. Similarly, we can list the
other two schemes as ½ðk1; 1Þ; ðk2; 1Þ� and ½ðk2; 2Þ�. Note that
only when the type of server on the rack matches the service
type required by the request, the server on this rack will be
assigned to the request. LetDr be the scheduling scheme set
of request r 2 R. If all potential schemes are explored, the
size of Dr may be very large. We will present an algorithm
called SCH in Section 4.3 to construct a scheduling scheme
set with low cost, and give its performance analysis.

In the online scenario, we focus on maximizing the total
reward, such as system throughput and the number of proc-
essed requests. The reward of request r 2 R is denoted as
wðrÞ. Iðr; d; kÞ denotes the number of servers assigned to the
request r on the rack k according to the scheme d 2 Dr. Since
the resources (e.g., bandwidth capacity) are limited, not
all requests will be served in the cloud. Thus, we use the
total reward as the performance metric of the online
algorithm. We describe the online TRS problem as fol-
lows:

max
X
r2R

X
d2Dr

xd
r � wðrÞ

S:t:

P
d2Dr

xdr � 1; 8r 2 RP
r2R

P
d2Dr

xdrIðr; d; kÞ � Ck; 8k 2 Ks; s 2 SP
r2R

P
d2Dr

xdrIðr; d; kÞ bsðrÞ
psðrÞ � Bk; 8k 2 Ks; s 2 SP

r2R
P

d2Dr
xd
rIðr; d; kÞ esðrÞ

psðrÞ � Ek; 8k 2 Ks; s 2 S

xdr 2 f0; 1g; 8r 2 R; d 2 Dr

8>>>>>><
>>>>>>:

(5)

4660 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

Note that xd
r means that whether the tenant-grained

request r 2 R chooses the scheduling scheme d or not. The
first set of inequalities denotes that a tenant-grained request
will choose at most one scheduling scheme. The second set
of inequalities means that the number of servers that will be
allocated on a rack cannot exceed the rack’s capacity. The
third and fourth sets of inequalities denote the bandwidth
and power constraints on racks, respectively. Our objective
is to maximize the total reward of tenant-grained requests
with resource constraints.

Algorithm 2. PDRA: Online Primal-Dual Algorithm

1: Step 1: Algorithm Initialization
2: Set constant F � by Eq. (7)
3: Set constant N with 3 � jKj, and � 2 ð0; 1Þ
4: Initialize the dual variables:
5: ar ¼ 0, bk ¼ 0, dk ¼ 0, uk ¼ 0, 8r; k
6: Step 2: Determining a Scheduling Scheme for the

Tenant-grained Requests
7: for each arrival of request r 2 R do
8: Use the SCH algorithm to compute scheduling scheme

setDr

9: Calculate the price of each scheduling scheme inDr

according to Eq. (8)
10: Set P ¼ maxd2DrPd

11: if P <¼ 0 then
12: Reject the request r
13: else
14: d� ¼ argmaxd2DrPd

15: Schedule request r according to d�

16: Update ar as P
17: Update bk, dk and uk by Eqs. (9), (10) and (11)

4.2 Algorithm Description

We present an online primal-dual request scheduling algo-
rithm called PDRA to solve Eq. (5). For ease of reference, we
summarize the main notions used in the PDRA algorithm in
Table 3. We first construct the dual problem for the linear
relaxation of Eq. (5). For the optimization objective and each
constraint in the TRS problem defined in Eq. (5), there is a
dual variable [41]. Specifically, the dual variable ar is for the
objective, bk; dk; uk are for the three sets of constraints,
respectively. Note that all these dual variables are non-

negative. We describe the dual problem as follows:

min
X
r2R

ar þ
X
k2Ks

X
s2S

ðCk � bk þBk � dk þ Ek � ukÞ

S:t:

ar � wðrÞ �P
k2Ks

P
s2S Iðr; d; kÞbk

�P
k2Ks

P
s2S Iðr; d; kÞ bsðrÞ

psðrÞ dk

�P
k2Ks

P
s2S Iðr; d; kÞ esðrÞ

psðrÞ uk; 8r 2 R; d 2 Dr

ar � 0; bk � 0; dk � 0; uk � 0; 8r 2 R; k 2 K

8>>>>><
>>>>>:

(6)

The PDRA algorithm first initializes the dual variables
and corresponding constants F �, N and �. According to the
first set of inequalities in Eq. (6), we define constant F � in
Eq. (7) as the maximum usage of each resource over all pos-
sible schemes of all requests. The constant N represents the
number of inequalities from the second set to the fourth set
in Eq. (5). That is, N ¼ 3 � jKj. The constant � 2 ½0; 1� denotes
a trade-off between resource violation and reward.

F � ¼ max
r;d;s

�
max

k

Iðr; d; kÞ
wðrÞ ;max

k

Iðr; d; kÞ � esðrÞ
psðrÞ � wðrÞ ;

max
k

Iðr; d; kÞ � bsðrÞ
psðrÞ � wðrÞ

�
(7)

The second step of PDRA is to choose a scheduling
scheme with the maximum profit for each request. When
request r 2 R comes, the PDRA algorithm derives a sched-
uling scheme setDr by using the SCH algorithm, which will
be introduced in Section 4.3. Then, the PDRA algorithm
calculates the profit of each scheme d 2 Dr. The profit
means the utility over all types of resources for the
request r 2 R. We denote the profit of scheme d 2 Dr as
follows:

Pd ¼ wðrÞ �
X
k2Ks

X
s2S

Iðr; d; kÞ bsðrÞ
psðrÞ dk þ bk þ

esðrÞ
psðrÞ uk

� 	
: (8)

Then we determine the maximum profit of all possible
scheduling schemes for request r 2 R, that is, P ¼
maxd2DrPd. If P is negative, it does not bring any profit by
scheduling this request. So, we reject this request. Otherwise,
we will choose an efficient scheduling scheme for request r 2
R. In a request scheduling system, there is a queue for those
requests waiting to be scheduled [29]. The rejected requests
can re-enter the queue and wait for the next scheduling
opportunity when there are enough resources. We use d� to
represent the scheduling scheme with the maximum profit
Pd, that is, d

� ¼ argmaxd2DrPd. Next, we allocate resources for
the tenant-grained request according to scheme d�. Then, we
update the dual variables ar as the maximum profit. Mean-
while, since the available resources of racks are used by
request r, the corresponding dual variables will increase
accordingly. To avoid the confusion, we use bk and b0k to
denote the dual variables before and after scheduling
request r. The dual variable update of server resource is
as follows:

b0k ¼ bk 1þ Iðr; d�; kÞ
Ck

� 	
þ � � Iðr; d�; kÞ

N � Ck � F � ; 8k 2 K (9)

TABLE 3
Key Notations for the PDRA Algorihtm

Parameters Description

Dr the scheduling scheme set of request r 2 R
wðrÞ the reward of request r 2 R
Iðr; d; kÞ the number of servers assigned to the request r

on the rack k according to the scheme d 2 Dr

xd
r whether request r 2 R chooses the scheduling

scheme d 2 Dr or not
Pd the profit of scheduling scheme d 2 Dr

d� the scheduling scheme with the maximum
profit, i.e., d� ¼ argmaxd2DrPd

Kr;s the candidate rack set with service type s 2 S
for the request r 2 R

qk;s the resource consumed by a unit request for
service s 2 S on rack k 2 Ks

TU ETAL.: TENANT-GRAINED REQUEST SCHEDULING IN SOFTWARE-DEFINED CLOUD COMPUTING 4661

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

For the bandwidth resource and power resource on rack
k, the dual variable updates are as follows:

d0k ¼ dk 1þ Iðr; d�; kÞ � bsðrÞ
Bk � psðrÞ

� 	
þ � � Iðr; d�; kÞ � bsðrÞ

N �Bk � F � � psðrÞ (10)

u0k ¼ uk 1þ Iðr; d�; kÞ � esðrÞ
Ek � psðrÞ

� 	
þ � � Iðr; d�; kÞ � esðrÞ

N � Ek � F � � psðrÞ : (11)

In Eqs. (10) and (11), d0k and u0k denote the values of dk and
uk after the resources are occupied by request r, respectively.

Algorithm 3. SCH: Constructing Scheduling Scheme Set
for Request r 2 R

1: Step 1: Computing Candidate Rack Set
2: for each type service s 2 S do
3: Initialize the candidate rack set Kr;s to the empty set
4: for each rack k 2 Ks do
5: Compute the resource consumption denoted as qk;s on

rack k for the unit requestmr;s

6: Update ’ as the maximum resource consumption of
rack k 2 Kr;s

7: if jKr;sj < psðrÞ then
8: Put rack k into Kr;s

9: else if qk;s < ’ then
10: Put rack k into Kr;s and remove the rack with

maximum resource consumption
11: Step 2: Computing Scheduling Scheme Set
12: Devise scheduling scheme setDr based on candidate rack

set and Theorem 6

The scheduler has the ability to detect whether a request
has been finished [29]. Once a request ends, the resources
occupied by this request will be released, and the dual vari-
ables of the released resources will be decreased accord-
ingly. The reduction of dual variables is based on Eqs. (9),
(10), and (11). We take the server resource as an example.
To avoid the confusion, we use bk and b00k to denote the dual
variables before and after server resource are released,
respectively. Similar to Eq. (9), we have

bk ¼ b00
k 1þ Iðr; d�; kÞ

Ck

� 	
þ � � Iðr; d�; kÞ

N � Ck � F � ; 8k 2 K (12)

Then, we transform Eq. (12) into

b00k ¼ bk � � � Iðr; d�; kÞ
N � Ck � F �

� 	
= 1þ Iðr; d�; kÞ

Ck

� 	
;8k 2 K: (13)

Similarly, let dk and d00k be the dual variables before and
after the bandwidth resource are released, respectively. uk
and u00k be the dual variables before and after the power
resource are released, respectively. Then, the update of dual
variables dk and uk are as follows.

d00k ¼ dk � � � Iðr; d�; kÞ � bsðrÞ
N �Bk � F � � psðrÞ

� 	
= 1þ Iðr; d�; kÞ � bsðrÞ

Bk � psðrÞ
� 	

(14)

u00k ¼ uk � � � Iðr; d�; kÞ � esðrÞ
N � Ek � F � � psðrÞ

� 	
= 1þ Iðr; d�; kÞ � esðrÞ

Ek � psðrÞ
� 	

: (15)

After a tenant-grained request quits, the dual variables can
be updated according to Eqs. (13), (14), and (15).

4.3 Construction of Scheduling Scheme Set

In this section, we introduce how to construct the scheduling
scheme set for a tenant-grained request with low cost. To this
end, we design the SCH algorithm in Algorithm 3 to derive a
set of scheduling schemes. The basic idea of SCH is to first
get a rack set, which is called candidate rack set, for each
type of service s 2 S required by request r 2 R. The racks in
candidate rack set have theminimum resource consumption.
Then SCH builds a set of scheduling schemes on the basis of
candidate racks. We denote the candidate rack set with ser-
vice type s 2 S for the request r 2 R as Kr;s, whose size is
psðrÞ. Note that the resource consumption includes the con-
sumption of server, bandwidth and power. To evaluate the
resource consumption of rack k 2 Ks for r 2 R, we use a unit
request of the tenant-grained request, which requires a single

server with bandwidth of esðrÞ
psðrÞ and power of bsðrÞ

psðrÞ . For ease of
expression, we denote a unit request of the tenant-grained
request r 2 R with service type s 2 S as mr;s. The resource
consumption ofmr;s on rack k is denoted as:

qk;s ¼ esðrÞ
psðrÞ � uk þ bk þ

bsðrÞ
psðrÞ � dk

The optimal scheduling scheme must satisfy the follow-
ing two theorems, which can be used to greatly reduce the
size of the scheduling scheme setDr.

Theorem 5. For any service s 2 S required by request r 2 R,
racks in the optimal scheduling scheme must belong to Kr;s.

Proof.We prove this theorem by contradiction. Let d0r be the
scheduling scheme with the maximum profit. We use
Kd0;s to denote the rack set with service type s 2 S in
scheme d0. For a rack k 2 Kd0;s, the number of servers allo-
cated for the request r is denoted as t0k. Let K1

d0;s be the
rack set which is not included in Kr;s, and is a subset of
Kd0;s. We use q0k;s to denote the resource consumption of
unit request mr;s on rack k 2 Kd0;s. The profit of scheme d0r
is denoted as P 0

d.
We construct another scheduling scheme denoted as

dr. The difference between dr and d0r is that we use the
rack inKr;s to replace the rack inK1

d0;s. We denote this new
rack set as K2

d;s. The profit of scheme dr is denoted as Pd;r.
Then, we can get the difference between Pd;r and P 0

d;r:

Pd;r � P 0
d;r ¼

X
k2K1

d0 ;s

q0k;s � t0k �
X

k2K2
d;s

qk;s � t0k � 0:

The last inequality is satisfied because the resource con-
sumption qk;s of the rack inK2

d;s is smaller than that inK1
d0;s,

that is, qk;s � q0k;s. This means that scheme dr has a higher
profit than that of d0r, which contradicts the assumption. tu
Let K�

r;s be the rack set with service type s 2 S in the opti-
mal scheduling scheme d�. Assume that there are two racks
ki and kj in K�

r;s. We denote the number of servers allocated
for request r 2 R on rack ki and kj as tki and tkj . For the opti-
mal scheme d�, we have the following theorem:

Theorem 6. In the optimal scheduling scheme, for any service
type s 2 S, if the resource consumption on rack ki is greater
than or equal to that on rack kj, that is, qki;s � qkj;s, the number

4662 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

of servers allocated on rack ki for request r is smaller than or
equal to that on rack kj, that is, tki � tkj .

Proof. We prove this theorem by contradiction. Let d00r be
the scheduling scheme of request r with the maximum
profit. For any service type s 2 S, the rack set of d00r is
denoted as K00

r;s. Assume that there are two racks k00i and
k00j in K00

r;s. The resource consumption of each rack is
denoted as q00ki;s and q00kj;s, which satisfies q00ki;s � q00kj;s. We
denote the number of servers allocated for request r on
rack k00i and k00j as tk00

i
and tk00

j
, which satisfies tk00

i
� tk00

j
. The

profit of scheme d00r is denoted as P 00
d;r.

We construct another scheduling scheme denoted as
dr. These two schemes have the same rack set. The num-
ber of servers allocated for the request r on rack k00i is t00kj
and the number of servers allocated for the request r on
rack k00j is t00ki . The profit of scheme dr is denoted as Pd;r.
We have

Pd;r � P 00
d;r ¼ q00ki;s � t00ki þ q00kj;s � t00kj � q00ki;s � t00kj � q00kj:s � t00ki

¼ ðq00ki;s � q00kj;sÞ � ðt00ki � t00kjÞ � 0:

The last inequality is satisfied because of q00ki;s � q00kj;s
and t00ki � t00kj . This means that the profit of dr is greater
than that of d00r , which contradicts the assumption. tu
Since we can only construct schemes satisfying Theorems

5 and 6, the size of the scheduling scheme set will be greatly
reduced. Now, we analyze the time complexity of SCH. The
first step of SCH takes OðjN jÞ to traverse all racks to get the
candidate rack set for the tenant-grained request. In order
to reduce time consumption, we can pre-compute the
scheduling scheme set for candidate rack sets of different
sizes, which makes the second step of SCH takes constant
time. Thus, the time complexity of SCH is OðjN jÞ. Since the
rack in the candidate rack set has the least resource con-
sumption, the scheduling scheme in Dr has a higher profit,
that is, the value of Pd is larger. To further reduce the time
consumed by PDRA, we can specify the size ofDr, e.g., 20.

4.4 Performance Analysis of PDRA

In this section, we analyze the performance of PDRA. We
first give the following lemma.

Lemma 7. For all dual variables, the update rules in the online
algorithm are dual feasible.

Proof. For dual variables bk, dk and uk, their values are non-
negative, as they increase from zero during the update.
For a request r, if it is rejected, we know that Pd is nega-
tive for 8d 2 Pd. If it is accepted, we set ar with the maxi-
mum value of Pd. Moreover, further updates can only
make the right hand of Eq. (8) to be smaller, thus preserv-
ing the feasibility of the constraints. tu

Lemma 8. The objective value of Eq. (6) will be increased no
more than 1þ � whenever a request r is accepted.

Proof. According the the update rules of the dual variables,
once a request r has been accepted and resource are allo-
cated with the scheme d�. Let ks be a rack, on which the
servers can provide service s 2 S. We denote the incre-
mental objective value the dual problem as D.

D ¼ wðrÞ þ
X
ks2d�

X
s2S

� � Iðr; d; kÞN � F �

þ
X
ks2d�

X
s2S

� � Iðr; d; kÞ � esðrÞ=psðrÞN � F �

þ
X
ks2d�

X
s2S

� � Iðr; d; kÞ � bsðrÞ=psðrÞN � F �

� wðrÞ þ � � N � F �

N � F � � wðrÞ ¼ ð1þ �Þ � wðrÞ
tu

For each request r 2 R and each rack k 2 K, we use
Lðk; rÞ and bðk; rÞ to denote the number of servers which
have been occupied on the rack k (after the request has been
processed) and the value of bk, respectively. Similarly, we
define the bandwidth load on rack k and the value of dk as
Gðk; rÞ and dðk; rÞ, respectively. We also define Hðk; rÞ as
the total power consumption on rack k. Let bðk; rÞ and
dðk; rÞ be bk and dk, respectively.

Lemma 9. For request r 2 R and each rack k, we have

bðk; rÞ � � � exp½Lðk;rÞ=Ck��1
N �F�

dðk; rÞ � � � exp½Gðk;rÞ=Fk��1
N �F�

uðk; rÞ � � � exp½Hðk;rÞ=Ek��1
N �F�

8>><
>>: : (16)

Proof. We prove the first set of inequalities in Eq. (9) by
induction of aggregated request ri. In the initial stage of
the algorithm, we set bðk; r0Þ ¼ Lðk; r0Þ ¼ 0. Thus, the
inequalities hold. We consider the situation in which a
request ri arrives. If request ri is rejected, the inequality is
still satisfied. If it is accepted, we have

Lðk; riÞ ¼ Lðk; ri�1Þ þ Iðri; d�; kÞ

bðrk; riÞ ¼ bðk; ri�1Þ 1þ Iðr; d�; kÞ
CðkÞ

� 	

þ � � Iðr; d�; kÞ
N � CðkÞ � F �

By induction hypothesis, it follows

bðk; riÞ

� � � exp½Lðk; ri�1Þ=CðkÞ� � 1

N � F � 1þ Iðr; d�; kÞ
CðkÞ

� 	

þ � � Iðr; d�; kÞ
N � CðkÞ � F �

¼ � � 1

N � F � exp
Lðk; ri�1Þ
CðkÞ

� 	
1þ Iðr; d�; kÞ

CðkÞ
� 	

� 1

� �

	 � � 1

N � F � exp
Lðk; ri�1Þ
CðkÞ

� 	
exp

Iðr; d�; kÞ
CðkÞ

� 	
� 1

� �

¼ � � exp½Lðk; rÞ=CðkÞ� � 1

N � F � :

The proof of the second and third sets of inequalities in
Eq. (9) is similar with the above analysis. Thus, the proof
of the following two sets of inequalities is omitted here. tu
We give the definition of competitive ratio for an online

algorithm according to [42].

TU ETAL.: TENANT-GRAINED REQUEST SCHEDULING IN SOFTWARE-DEFINED CLOUD COMPUTING 4663

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

Definition 2. If an online algorithm achieves at least z �OPT ,
where OPT is the optimal result for TRS, and the server
resource constraint, the bandwidth capacity constraint and the
power capacity constraint are violated by a multiplicative factor
h, we call that the online algorithm is ½z; h� competitive.

The parameter z measures how much we lose by restrict-
ing access to the request information in the online case, and
parameter h measures the extent to which the algorithm
may overload the system by violating certain resource
constraints.

Theorem 10. For any specified � 2 ð0; 1Þ, the online algorithm is
½ð1� �Þ; Oðlog 3 � nþ log ð1=�ÞÞ� competitive.

Proof. Whenever request r 2 R is accepted, the objective
value of Eq. (5) will be increased with wðrÞ. According to
Lemma 8, the objective value of the dual problem increases
less than ð1þ �Þ � wðrÞ. Therefore, the overall objective
value of Eq. (5) is at least ð1� �Þ times as that of Eq. (6).
Thus, we know that the reward of the PDRA algorithm is
at least ð1� �Þ �OPT , where OPT is the optimal result for
the PDRA algorithm.

According to Eq. (9), it follows that bk � 1þ F � in any
iteration of the PDRA algorithm. Combining with the
above analysis and Lemma 9, we have

Lðk; rÞ
Ck

� log
bk � N � F �

�
þ 1

� 	

� log
ð1þ F �Þ � N � F �

�
þ 1

� 	
¼ Oðlog 3 � nþ log ð1=�ÞÞ:

This result shows that at the end of the online algo-
rithm, the violation level on the rack capacity constraint
is upper bounded by Oðlog 3 � nþ log ð1=�ÞÞ. Therefore,
the proposed PDRA algorithm can achieve the competi-
tive ratio of ½ð1� �Þ; Oðlog 3 � nþ log ð1=�ÞÞ�. tu
Under online scenario, the PDRA algorithm can achieve

the approximation factor of 1� � for the objective of total
reward, while violating the resource constraints by a factor
of Oðlog 3 � nþ log ð1=�ÞÞ at most. Combining with Defini-
tion 2, we conclude that PDRA is ½ð1� �Þ; Oðlog 3 � nþ
log ð1=�ÞÞ� competitive. The constant � 2 ½0; 1� denotes a
trade-off between resource violation and reward. Now, we
give a practical example to illustrate the approximation per-
formance of PDRA. We assume that � ¼ 0:1. Consider a
large-scale network with n ¼ 1000 racks, so that log 3 � nþ
log ð1=�Þ 	 4:4. It means that the approximation factor of the
optimization objective is 0.9, while violating resource con-
straints by a factor of 4.4.

Algorithm Running Example: The settings of the example
are the same as those of NTRS’s example (see the end of Sec-
tion 3.2). Assume that the reward of r1, r2 and r3 are wðr1Þ ¼
2, wðr2Þ ¼ 2 and wðr3Þ ¼ 3, respectively. Following lines 1-5,
we initialize the parameters of PDRA. We calculate that
F � ¼ 2:5, N ¼ 6, and set � ¼ 0:1, ar ¼ 0, bk ¼ 0, dk ¼ 0 and
uk ¼ 0. We suppose that requests r1, r2 and r3 are sequen-
tially submitted to the system in the online scenario. Thus,
we first determine the scheduling scheme for r1. Following
line 8 in Algorithm 2, we know that the candidate rack set

Kr1;s ¼ fk1; k2g. According to SCH described in Algorithm
3, we compute the scheduling scheme set Dr1 , which
includes three scheduling schemes. The first one is that two
servers in rack k1 are assigned to r1. The second one is that
one server in each of racks k1 and k2 are assigned to r1. The
third one is that two servers in rack k2 are assigned to r1.
These three schemes are represented by d1r1 , d

2
r1

and d3r1 ,
respectively. Following lines 9-10 in Algorithm 2, we calcu-
late the price of each scheduling scheme. Since bk, dk and uk
are all initialized to 0 at the beginning, the prices of d1r1 , d

2
r1

and d3r1 are all equal to 2. We assume that scheduling
scheme d2r1 is selected. Thus, we assign one server on each
of racks k1 and k2 to r1. Similar to the steps above, one server
on each of racks k1 and k2 is assigned to r2. Two servers on
rack k1 and one server on rack k2 are assigned to r3.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
algorithms through both small-scale testbed implementation
and large-scale simulations. Section 5.1 first introduces the
performance metrics and methodology. Then, Section 5.2
presents the simulation results. Last, Section 5.3 gives the
experiment results. The conclusion of experiment results
agrees with that from the simulation results.

5.1 Performance Metrics and Methodology

For the offline scenario, we choose two metrics. The first one
is rack load factor (RLF). During the system running, we mea-
sure the bandwidth load lðkÞ of the ToR switch on each
rack k, and the rack load factor is defined as: RLF ¼
maxflðkÞ=BðkÞ; k 2 Kg, where BðkÞ is the bandwith capacity
of the ToR switch associated with rack k. The second one is
the number of tenants served by a server (NTS). The smaller
RLF and NTS means better bandwidth load balancing
among ToR switches on racks and tenant isolation, respec-
tively. To evaluate how well the proposed algorithm per-
forms, we compare it with the other three benchmarks. The
first one is the optimal result, denoted as OPT-LP, which
can be derived by optimally solving the linear program-
ming based on Eq. (1). The second one is the fine-grained
request scheduling algorithm (FRS), modified from [10].
FRS sorts all individual requests in descending order
according to bandwidth requirements, then chooses a server
with the maximum bottleneck resource. The last one is a
greedy load balancing algorithm, denoted as Greedy, which
first sorts all tenant-grained requests in descending order
according to bandwidth requirements. Then it chooses a
server with the maximum available bottleneck resource for
each tenant-grained request.

For the online scenario, we use the following four perfor-
mance metrics. The first metric is scheduling time which is
the time for the scheduler to make scheduling decisions.
The second metric is scheduling message consumption, which
is the bandwidth overhead for the scheduler to send sched-
uling decision messages to servers. These two metrics eval-
uate the degree of system scalability and the scheduling
overhead. The third metric is NTS, which is used to estimate
the performance of tenant isolation. Since throughput is
important for clouds, we use the system throughput as the
reward under the online scenario. Thus, the last metric is

4664 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

the system throughput. To evaluate the performance of our
online algorithm, we choose two benchmarks for perfor-
mance comparison. The first one is the online fine-grained
request scheduling algorithm [11], denoted as ONFR. Once
an individual request arrives, ONFR first chooses the rack
with the maximum available bottleneck resource, then
schedules this individual request. The second one is based
on the online bin packing algorithm that schedules requests
at the granularity of tenant, which is denoted as ONPA and
modified from [9]. ONPA traverses racks in sequence until
it finds a rack which can handle the incoming request.

5.2 Simulation Evaluation

In this section, we introduce the simulation settings, includ-
ing the rack set settings and generation methods of individ-
ual requests and tenant-grained requests.

5.2.1 Simulation Settings

1) Rack Set: According to our statistics from Google Clusters
[43], we set the number of servers that a rack can hold with
a random number in [25, 30]. To emulate the heterogeneous
environment (e.g., the bandwidth and power capacity of
different racks would be different), the bandwidth capacity
of each rack is drawn uniformly between 15Gbps and
20Gbps, and the power capacity is generated randomly
from 15kW to 20kW.

2) Request Generation: Similar to [10], [11], we use the data
traces of Google Clusters [43] to generate the individual
request set. Two data sets denoted as (a) and (b) in Google
Clusters are adopted in this simulation. The difference
between these two data sets is that the individual requests
in Data Set (a) require more computation resources than
that in Data Set (b). Note that, these data traces only contain
the information of CPU cost of individual requests. To be
more practical, we randomly generate other required infor-
mation for our simulations. Specifically, for the individual
request set, the bandwidth and power requirement of indi-
vidual requests are generated through multiplying the CPU
demand with a random value in (0.1,1), respectively.

Moreover, we assume that each tenant-grained request con-
sists of 500 individual requests, and the CPU requirement
of each tenant-grained request is the sum of the CPU
requirement of these individual requests. With the similar
way, we can get the bandwidth and power requirements of
each tenant-grained request. According to [29], we set the
schedule message consumption for the scheduler to sched-
ule one request to the specified server and 1KB, respec-
tively. For ease of reference, we summarize the main
parameters used in simulation in Table 4.

3) Simulation Scenarios: The simulations are performed
under two scenarios, that is the offline scenario and online
scenario. To evaluate the performance of our proposed algo-
rithms, we test the performance of OPT-LP, FRS, NTRS and
Greedy under the offline scenario. Under the online sce-
nario, we compare PDRA with ONFR and ONPA. We eval-
uate our algorithm using the computer equipped with a
core i7-8700k processor and 32GB of RAM.

5.2.2 Simulation Results Under the Offline Scenario

The first set of simulations investigates the rack load factor
and NTS by changing the number of individual requests,
given 1
 104 racks. The results are shown in Figs. 2 and 3.
In Fig. 2, as the number of individual requests increases, the
rack load factor increases for all algorithms. However, the
increasing rate of NTRS is much slower than that of Greedy.
Since it is easier to achieve bandwidth load balancing for
resource allocation by fine-grained request scheduling, the
rack load factor of FRS is very close to that of OPT-LP. Our
proposed NTRS algorithm can achieve the load balancing
performance with a very small gap with OPT-LP and FRS.
Specifically, when there are 35
 105 individual requests in
the dataset (a), the gap between NTRS and OPT-LP/FRS is
within 3% while decreasing the rack load factor by about
28% compared with Greedy. In Fig. 3, we can see that the
average and the maximum number of tenants served by a
server increase for FRS, while that of NTRS remains at one,
which means that NTRS can achieve better tenant isolation.
The reason is that NTRS allocates resources at the granular-
ity of tenant-grained requests with tenant isolation, while
others can not.

In the second set of simulations, we observe the rack load
factor by changing the number of racks under 30
 105 indi-
vidual requests. The results are shown in Fig. 4. As the num-
ber of racks increases, the rack load factor decreases for all
four algorithms, since there are more resources. However,
the rack load factor of NTRS is always smaller than that of
Greedy and very close to that of OPT-LP. Specifically, in
dataset (a), when the number of racks is 1:3
 104, NTRS

TABLE 4
Simulation Parameter Settings

Parameters Description

the number of servers in a rack [25,30]
the bandwidth capacity of a rack [15Gbps, 20Gbps]
the power capacity of a rack [15kW, 20kW]
scheduling message cost per request 1KB
data set Google Cluster

Fig. 2. Rack Load Factor versus No. of Individual Requests Left plot:
Dataset (a); right plot: Dataset (b).

Fig. 3. No. of Tenants Served by a Server versus No. of Individual
Request Left plot: Dataset (a); right plot: Dataset (b).

TU ETAL.: TENANT-GRAINED REQUEST SCHEDULING IN SOFTWARE-DEFINED CLOUD COMPUTING 4665

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

can decrease the rack load factor by 27:5% compared with
Greedy, while the gap between NTRS and OPT-LP is 3%.
This shows that NTRS can effectively reduce the rack load
factor.

5.2.3 Simulation Results Under the Online Scenario

The third set of simulations evaluates the throughput and
NTS by changing the number of individual requests given
1
 104 racks under the online scenario. The results are
shown in Figs. 5 and 6. Fig. 5 shows that with the number of
individual requests increases, the throughput increases for
all three algorithms. The throughput of our proposed algo-
rithm is higher than that of ONPA and slightly lower than
that of ONFR. Specifically, by the right plot of Fig. 5, in the
case of 50
 105 individual requests, PDRA can achieve
higher throughput about of 40% than that of ONPA while
close to that of ONFR. Since fine-grained request scheduling
can use fragmented resources, the performance of ONFR is
slightly better than PDRA. In Fig. 6, we can observe that the
PDRA algorithm can achieve better tenant isolation under
the online scenario. With the number of individual requests
increases, the average and the maximum number of tenants
served by a server increase for the fine-grained request sched-
uling, while that of our proposed algorithm remains at one.

In the fourth set of simulations, we change the number of
racks to observe the throughput. Since the individual
requests in dataset (a) require more resources than in dataset

(b), we generate 45
 105 individual requests for dataset (a)
and 70
 105 individual requests for dataset (b). The results
are shown in Fig. 7. The throughput of all three algorithms
increases with the increasing number of racks. The through-
put of PDRA is close to that of ONFR and much higher
than that of ONPA. For example, in the dataset (a), when the
number of racks is 1
 104, The PDRA algorithm can
improve the system throughput by about 41:3% compared
with ONPA and the throughput gap between PDRA and
ONFR is within 2%.

The fifth set of simulations shown in Figs. 8 and 9 investi-
gates the scheduling time and message consumption by
changing the number of individual requests given 1
 104

racks. As the number of individual requests increases, the
scheduling time and message consumption of the bench-
marks are increasing rapidly, while these scheduling over-
head of the PDRA algorithm grows slowly. For example,
given 8
 106 individual requests, the scheduling time and
message consumption of the FRS algorithm, which is a fine-
grained request schedulingmethod, are 500
more than that
of our algorithms. Though the scheduling time and message
consumption of the ONPA algorithm, which schedules
requests at the tenant granularity, are as low as that of the
PDRA algorithm, our algorithm can achieve a higher
throughput about of 40% as shown in Fig. 5.

From these simulation results, we can draw the following
conclusions. First, compared with the fine-grained request
scheduling methods, our proposed algorithms can achieve
similar network performance (i.e., bandwidth load factor in

Fig. 4. Rack Load Factor versus No. of Racks Left plot: Dataset (a); right
plot: Dataset (b).

Fig. 5. Throughput versus No. of Individual Requests Left plot: Dataset
(a); right plot: Dataset (b).

Fig. 6. No. of Tenants Served by a Server versus No. of Individual
Requests Left plot: Dataset (a); right plot: Dataset (b).

Fig. 7. Throughput versus No. of Racks Left plot: Dataset (a); right plot:
Dataset (b).

Fig. 8. Scheduling Time versus No. of Individual Requests.

Fig. 9. Scheduling Message Consumption versus No. of Individual
Requests.

4666 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

the offline scenario and throughput in the online scenario)
while reducing schedule overhead more than 90% and
achieving better tenant isolation. Second, compared with
the other tenant-grained request scheduling benchmarks,
our proposed algorithms can achieve much better network
performance, e.g., our algorithms can reduce the rack load
factor by about 28% under the offline scenario, and increase
throughput by more than 40% in the online scenario.

5.2.4 Dealing With Small-Scale Tenants and

Combining Tenant-Grained Request Scheduling

With Fine-Grained Request Scheduling

We design a set of simulation to illustrate the resource utili-
zation improvement by the combination of fine-grained
request scheduling and tenant-grained request scheduling.
Since the simulation results in Figs. 5 and 7 show that the
tenant-grained request scheduling has limited impact on
resource utilization of large-scale tenants, the following sim-
ulations are for small-scale tenants. We compare the perfor-
mance of four scheduling methods. The first one is the
proposed tenant-grained request scheduling algorithm
(TRS) in this paper. The second one is denoted as ST+TRS,
which aggregates individual requests from multiple small-
scale tenants first, and then performs tenant-grained request
scheduling. ST+TRS can avoid the resource waste problem
of small-scale tenants. The third one is denoted as ST+TRS
+FRS, which first performs ST+TRS to schedule tenant-
grained requests, and then performs fine-grained request
scheduling to schedule individual requests from one
underutilized server to another. ST+TRS+FRS combines ten-
ant-grained request scheduling and fine-grained request
scheduling, which can further improve resource utilization.
The last one is fine-grained request scheduling (FRS), which
performs the best for resource utilization. Since the system
throughput reflects resource utilization, we choose system
throughput as the metric for performance comparison.

In the simulation, we change the maximum number of
tenants a server can serve (MNT) and observe its impact on
system throughput. This set of simulation can evaluate the
trade-off between resource utilization and tenant isolation.
The simulation results are shown in Fig. 10. We use the data
traces (a) and (b) of Google Clusters [43] to generate 60

105 individual requests. Since FRS does not consider tenant
isolation and TRS always assigns a server to only one ten-
ant, their throughput does not change with MNT. The sys-
tem throughput of FR+TRS and ST+TRS+FRS grows with
MNT, since the tenant isolation constraint is weakened.
When MNT is greater than 8, the throughput gap between
ST+TRS+FRS and FRS is within 5%, which means that the
combination of fine-grained request scheduling method

and tenant-grained request scheduling method can further
improve resource utilization. Thus, we can use ST+TRS
+FRS to improve resource utilization for small-scale tenants.

5.3 Testbed Evaluation

5.3.1 Testbed Settings

To better evaluate the performance of tenant-grained
request scheduling, we implement the proposed algorithms
on a real testbed, which contains seven servers running
Ubuntu 18.04. Among them, six servers are used to start vir-
tual machines (VMs) for processing tenants’ requests, and
each server is equipped with a 22-core Intel Xeon 6152 pro-
cessor and 128GB memory. Another server is equipped
with a 10-core Intel i9-10900 processor and 64 GB of RAM,
and is used as a scheduler that is responsible for allocating
VMs to requests through scheduling algorithms. It should
be noted that the computing resources allocated for tenant-
grained requests in the testbed are VMs rather than servers
due to the limited number of servers in the testbed. We set
20 tenants in our experiment, and the individual requests
generated by each tenant come from Google Cluster [43].
We use the vnStat tool [44] to monitor and collect schedul-
ing message consumption from the scheduler. To verify the
tenant isolation performance, we randomly select a tenant
as a malicious one, which can launch denial of service (DoS)
attacks [45] with the hping tool [46]. Once other tenants’
applications are attacked, their request completion time will
be longer. Since every tenant expects that their requests can
be processed as soon as possible, the nearly last request
completion time of each tenant can be a meaningful metric
to evaluate tenants’ QoS. Thus, we measure the completion
time of all requests and 99% request completion time of
each tenant for tenant isolation performance comparison.
Similar to simulation, the testbed are conducted under both
offline and online scenarios.

5.3.2 Testbed Results Under the Offline Scenario

Figs. 11 and 12 show the tenant isolation performance given
1000 individual requests under the offline scenario. Fig. 11
depicts the request completion time when the malicious ten-
ant launches a DoS attack. From the experimental results,
we observe that the request completion time of FRS (based
on fine-grained request scheduling) is much longer than
that of NTRS and Greedy (based on tenant-grained request
scheduling). Specifically, the percentages of requests with
completion time more than 500ms through NTRS, Greedy
and FRS are 8%, 10% and 46%, respectively. Fig. 12 displays

Fig. 10. Throughput versusMNT Left plot: Dataset (a); right plot: Dataset (b).

Fig. 11. No. of Individaul Reqeusts versus Request Completion Time
under the Offline Scenario.

TU ETAL.: TENANT-GRAINED REQUEST SCHEDULING IN SOFTWARE-DEFINED CLOUD COMPUTING 4667

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

the 99%tile request completion time of each tenant. The
results show that the numbers of tenants with 99%tile
request completion time more than 500ms through NTRS,
Greedy and FRS are 2, 2 and 13, respectively. This illustrates
that tenant isolation achieved by tenant-grained request
scheduling under the offline scenario can effectively reduce
the impact of malicious tenant attacks on other normal
tenants.

Fig. 13 exhibits the rack load factor performance by
changing the number of individual requests. As the number
of individual requests increases, the rack load factor
increases for all algorithms and the increasing rate of NTRS
is much slower than that of Greedy. Specifically, when there
are 1000 individual requests, the rack load factors of NTRS,
FRS and Greedy are 0.43, 0.41 and 0.66, respectively. With
the help of fine-grained request scheduling, the rack load
factor performance of FRS is slightly better than that of
NTRS, and the gap between NTRS and FRS is within 5%.
Moreover, NTRS can decrease the rack load factor by about
34:8% compared with Greedy.

From the experiment results under the offline scenario,
we can draw the following conclusion. First, from Figs. 11
and 12, the offline tenant-grained request scheduling
through NTRS can achieve tenant isolation, so the request
completion time performance of NTRS is better than that of
FRS. Specifically, NTRS can reduce the number of tenants
whose 99%tile request completion time exceeds 500ms by
55%. Second, Fig. 13 shows that the NTRS algorithm can still
achieve similar rack load factor performance to FRS, and
reduce rack load factor by 34% compared with Greedy
while ensuring tenant isolation. In conclusion, the offline
tenant-grained request scheduling algorithm can achieve
rack load factor performance similar to fine-grained request
scheduling with tenant isolation guaranteeing.

5.3.3 Testbed Results Under the Online Scenario

The experiment results under the online scenario are shown
in Figs. 14, 15, 16, 17, 18, and 19. Figs. 14, 15, and 16 show the
tenant isolation performance. Specifically, Fig. 14 depicts
that the number of tenants served by a VM through ONFR
(based on fine-grained request scheduling) grows when the
number of individual requests increases. On the contrary,
PDRA andONPA (based on tenant-grained request schedul-
ing) can ensure that each VM only serves one tenant, thereby
guaranteeing tenant isolation. Fig. 15 exhibits the request
completion time results given amalicious tenant. The experi-
ment results show the request completion time of ONFR is
much longer than that of PDRA and ONPA. Specifically, the
completion time of more than 90% requests through the pro-
posed PDRA algorithm is less than 500ms, while around
42:5% of requests through ONFR are completed in more
than 500ms. Fig. 16 displays the 99%tile request completion
time of tenants. The experiment results show that the num-
bers of tenants with 99%tile request completion time more

Fig. 12. No. of Tenants versus 99%tile Request Completion Time under
the Offline Scenario.

Fig. 13. Rack Load Factor versus No. of Individual Requests under the
Offline Scenario.

Fig. 14. No. of Tenants Served by a VM versus No. of Individual
Requests under the Online Scenario.

Fig. 15. No. of Individual Reqeusts versus Request Completion Time
under the Online Scenario.

Fig. 16. No. of Tenants versus 99%tile Request Completion Time under
the Online Scenario.

4668 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

than 500ms through PDRA, ONPA and ONFR are 2, 2 and
11, respectively. These results confirm that tenant isolation
achieved by tenant-grained request scheduling under the
online scenario can effectively reduce the impact of mali-
cious tenants on other normal tenants.

Figs. 17, 18, and 19 give the online scheduling perfor-
mance results, including throughput, scheduling time and
message consumption. Specifically, Fig. 17 displays the
throughput performance by changing the number of indi-
vidual requests. The results show that as the number of
individual requests increases, the throughput increases for
all benchmarks. The throughput by the proposed PDRA
algorithm is close to that of ONFR and higher than that of
ONPA. For example, when there are 1400 individual
requests, the throughput achieved by ONFR, PDRA and
ONPA are 22.96Gbps, 21.37Gbps and 16.21Gbps, respec-
tively. It means that PDRA can increase the throughput by
about 30% compared with ONPA. Figs. 18 and 19 exhibit
the scheduling time and message consumption by changing
the number of individual requests. The results show that
when the number of individual requests increases, the
scheduling time and message consumption of the fine-
grained request scheduling algorithm (i.e., ONFR) grow
rapidly and those of tenant-grained request scheduling
algorithms (i.e., PDRA and ONPA) increase slowly. For
example, given 1400 individual requests, the scheduling
time and message consumption of ONFR are 0:844s and
1427KB, respectively. Compared with ONFR, the proposed
PDRA algorithm can reduce the scheduling time by 70%
and the scheduling message consumption by 80.4%. It veri-
fies that the tenant-grained request scheduling method
under the online scenario can greatly reduce the scheduling
time and message consumption, thereby reducing schedul-
ing overhead and enhancing system scalability.

From the experiment results under the online scenario,
we can draw the following conclusion. First, from Figs. 14,
15, and 16, the online tenant-grained request scheduling
through the proposed PDRA algorithm can achieve tenant
isolation, so the request completion time performance of
PDRA is better than that of ONFR. For example, it can
reduce the number of tenants whose request completion
time exceeds 500ms by 45% compared with ONFR. Second,
Fig. 17 shows that PDRA can improve throughput by 30%
compared with ONPA and still maintain a similar through-
put performance to ONFR while ensuring tenant isolation.
Third, from Figs. 18 and 19, PDRA can reduce the schedul-
ing time and message consumption by 70% and 80:4% com-
pared with ONFR, respectively.

6 RELATED WORKS

To provide high-quality services, cloud providers expect to
meet requests’ requirements (e.g., computing resources,
completion time etc.) as much as possible through schedul-
ing requests, while ensuring tenants’ security. In this sec-
tion, we summarize the state-of-the-art request scheduling
methods and security guarantee solutions in the cloud.

Request scheduling has been extensively studied in recent
years to maximize cloud providers’ revenue and resource
utilization. The comprehensive survey of request scheduling
can be found in [47], [48], [49], [50]. Almost all the previous
methods are based on fine-grained request scheduling.
Mann et al. [10] study the request scheduling problem by
jointly optimizing the mapping virtual machines (VMs) to
physical machines and themapping application components
to VMs, and they also take into account colocation con-
straints, hardware affinity relations, sizing aspects and
license costs. Atmant et al. [16] design a semi-online request
scheduling framework based on a bin packing approach.
This approach gathers information on incoming requests
during a short time window before deciding on their assign-
ments, and uses a dynamic and real-time allocation algo-
rithm to make scheduling decisions. Wardat et al. [17] try to
fulfil requests’ requirements and maximize the revenue
while reducing the total operational cost through servers
consolidation. Li et al. [22] propose WIHAUL, a network-
wide airtime resource allocation and scheduling mechanism
that works with TDM-based medium access protocols
(including 3GPP 5GNR and IEEE 802.11ad), which explicitly
guarantees inter-flow max-min fairness in mm-wave back-
hauls. POCLib [51] presents a set of new solutions that enable
efficient random access on hierarchically compressed data,

Fig. 18. Scheduling Time Consumption versus No. of Individual
Requests under the Online Scenario.

Fig. 17. Throughput versus No. of individual requests under online
scenario.

Fig. 19. Scheduling Message Consumption versus No. of Individual
Requests under the Online Scenario.

TU ETAL.: TENANT-GRAINED REQUEST SCHEDULING IN SOFTWARE-DEFINED CLOUD COMPUTING 4669

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

significantly reducing large bandwidth consumption during
request scheduling. It should be noted that the tenant-
grained request scheduling method reduces bandwidth con-
sumption by reducing the number of scheduling messages,
while the compression-based direct processing technique
like POCLib reduces bandwidth consumption by compress-
ing data. Although these twomethods have different mecha-
nisms to reduce bandwidth consumption, they can be
applied in the system at the same time.

However, the above request scheduling methods can not
guarantee tenants’ security. Malicious tenants can launch
attacks such as DoS to paralyze servers and pose a great
threat to other normal tenants. To prevent malicious ten-
ants, a series of detection mechanisms have been proposed.
Seawall [52] deploys a traffic analysis module on the hyper-
visor for detecting the UDP traffic or abnormally behaving
TCP stack from the malicious tenants. Once malicious traffic
is detected, the security module may limit the malicious
traffic speed or shut down the malicious VM. Privateeye
[53] detects the malicious VM based on the 10-minute flow
pattern changes, but it still cannot achieve 100% malicious
detection. Ho et al. [54] present a new approach for detect-
ing credential spearphishing attacks in enterprise settings.
Their method uses features derived from an analysis of fun-
damental characteristics of spearphishing attacks, combined
with a new non-parametric anomaly scoring technique for
ranking alerts.

Although the above malicious tenant detection methods
can ensure tenants’ security to a certain extent, the damage
may have been caused before malicious tenants are success-
fully detected. Thus, even if they can detect malicious ten-
ants, they cannot avoid the influence of malicious tenants
on other normal tenants. Different from these methods, this
paper only assigns a server to an enterprise tenant while
scheduling requests to achieve tenant isolation, so as to
avoid malicious tenants from attacking other normal ten-
ants on the same server, thereby enhancing cloud reliability.
Moreover, compared with previous request scheduling
methods based on fine-grained request scheduling, this
paper proposes the tenant-grained request scheduling
method to greatly reduce scheduling overhead.

7 CONCLUSION

In this paper, we study the tenant-grained request scheduling
to achieve high scalability, while considering tenant isolation
and resource constraints. We design two efficient algorithms
for the offline and online scenarios and formally analyze their
approximation performance. Extensive simulation and exper-
iment results show that our algorithms can greatly reduce
scheduling overhead and achieve tenant isolation, while
maintaining similar performance (i.e., rack load factor and
throughput) to the fine-grained schedulingmethod.

REFERENCES

[1] A. Fox et al., “Above the clouds: A berkeley view of cloud
computing,” Dept. Electrical Eng. Comput. Sciences, Univ. Cali-
fornia, Berkeley, CA, Tech Rep. UCB/EECS, 2009.

[2] D. Catteddu, “Cloud computing: Benefits, risks and recommenda-
tions for information security,” in Proc. Iberic Web Application
Secur. Conf., 2009, pp. 17–17.

[3] A. Khajeh-Hosseini, I. Sommerville, and I. Sriram, “Research chal-
lenges for enterprise cloud computing,” 2010, arXiv:1001.3257.

[4] M. Armbrust et al., “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, 2010.

[5] T. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and
challenges,” in Proc. 24th IEEE Int. Conf. Adv. Informat. Netw. Appl.,
2010, pp. 27–33.

[6] “Cloud services global market opportunities and strategies to
2022,” 2019. Accessed: Aug. 28, 2022. [Online]. Available: https://
www.businesswire.com/news/home/20190411005524/en/528.4-
Billion-Cloud-Services-Market-Global-Opportunities

[7] C.-L. Hsu and J. C.-C. Lin, “Factors affecting the adoption of cloud
services in enterprises,” Informat. Syst. E-Bus. Manage., vol. 14,
no. 4, pp. 791–822, 2016.

[8] E. Truyen, D. Van Landuyt, V. Reniers, A. Rafique, B. Lagaisse,
and W. Joosen, “Towards a container-based architecture for
multi-tenant SaaS applications,” in Proc. 15th Int. Workshop Adap-
tive Reflective Middleware, 2016, pp. 1–6.

[9] C. Li and X. Tang, “On fault-tolerant bin packing for online
resource allocation,” IEEE Trans. Parallel Distrib. Syst., vol. 31,
no. 4, pp. 817–829, Apr. 2019.

[10] Z. �A. Mann, “Resource optimization across the cloud stack,”
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 1, pp. 169–182,
Jan. 2017.

[11] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in dis-
tributed machine learning clusters,” in Proc. IEEE Conf. Comput.
Commun., 2018, pp. 495–503.

[12] W. Song, Z. Xiao, Q. Chen, and H. Luo, “Adaptive resource provi-
sioning for the cloud using online bin packing,” IEEE Trans. Com-
put., vol. 63, no. 11, pp. 2647–2660, Nov. 2014.

[13] H. Xu and B. Li, “Joint request mapping and response routing for
geo-distributed cloud services,” in Proc. IEEE INFOCOM, 2013,
pp. 854–862.

[14] R. Burra, C. Singh, and J. Kuri, “Service scheduling for bernoulli
requests and quadratic cost,” in Proc. IEEE Conf. Comput. Com-
mun., 2019, pp. 2584–2592.

[15] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76,
Jan. 2015.

[16] V. Armant, M. De Cauwer, K. N. Brown, and B. O’Sullivan,
“Semi-online task assignment policies for workload consolidation
in cloud computing systems,” Future Gener. Comput. Syst., vol. 82,
pp. 89–103, 2018.

[17] M. Wardat, M. Al-Ayyoub, Y. Jararweh, and A. A. Khreishah,
“Cloud data centers revenue maximization using server consoli-
dation: Modeling and evaluation,” in Proc. IEEE Conf. Comput.
Commun. Workshops, 2018, pp. 172–177.

[18] S. Mazumdar and M. Pranzo, “Power efficient server consolida-
tion for cloud data center,” Future Gener. Comput. Syst., vol. 70,
pp. 4–16, 2017.

[19] J. Mate, K. Daudjee, and S. Kamali, “Robust multi-tenant server
consolidation in the cloud for data analytics workloads,” in Proc.
IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 2111–2118.

[20] M. Korupolu and R. Rajaraman, “Robust and probabilistic failure-
aware placement,” ACM Trans. Parallel Comput., vol. 5, no. 1,
pp. 1–30, 2018.

[21] L. Chen, S. Liu, B. Li, and B. Li, “Scheduling jobs across geo-dis-
tributed datacenters with max-min fairness,” IEEE Trans. Netw.
Sci. Eng., vol. 6, no. 3, pp. 488–500, Jul.–Sep. 2019.

[22] R. Li and P. Patras, “Max-min fair resource allocation in milli-
metre-wave backhauls,” IEEE Trans. Mobile Comput., vol. 19, no. 8,
pp. 1879–1895, Aug. 2020.

[23] M. Shafiee and J. Ghaderi, “On max-min fairness of completion
times for multi-task job scheduling,” in Proc. IFIP Netw. Conf.,
2020, pp. 100–108.

[24] 2020. [Online]. Available: https://www.alibabacloud.com/
[25] C. Delimitrou and C. Kozyrakis, “Bolt: I know what you did last

summer... in the cloud,” ACM SIGARCH Comput. Architecture
News, vol. 45, no. 1, pp. 599–613, 2017.

[26] L. Csikor, C. Rothenberg, D. P. Pezaros, S. Schmid, L. Toka, and
G. R�etv�ari, “Policy injection: A cloud dataplane dos attack,” in
Proc. ACM SIGCOMMConf. Posters Demos, 2018, pp. 147–149.

[27] A. O. F. Atya, Z. Qian, S. V. Krishnamurthy, T. La Porta, P. McDa-
niel, and L. M. Marvel, “Catch me if you can: A closer look at mali-
cious co-residency on the cloud,” IEEE/ACM Trans. Netw., vol. 27,
no. 2, pp. 560–576, 2019.

4670 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

https://www.businesswire.com/news/home/20190411005524/en/528.4-Billion-Cloud-Services-Market-Global-Opportunities
https://www.businesswire.com/news/home/20190411005524/en/528.4-Billion-Cloud-Services-Market-Global-Opportunities
https://www.businesswire.com/news/home/20190411005524/en/528.4-Billion-Cloud-Services-Market-Global-Opportunities
https://www.alibabacloud.com/

[28] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and
F. Yang, “Analysis of large-scale multi-tenant {GPU} clusters for
{DNN} training workloads,” in Proc. USENIX Annu. Tech. Conf.,
2019, pp. 947–960.

[29] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at Google with
borg,” in Proc. 10th Eur. Conf. Comput. Syst., 2015, pp. 1–17.

[30] N. Bronson, T. Lento, and J. L. Wiener, “Open data challenges at face-
book,” inProc. IEEE 31st Int. Conf. Data Eng., 2015, pp. 1516–1519.

[31] H. Sun, P. Stolf, and J.-M. Pierson, “Spatio-temporal thermal-aware
scheduling for homogeneous high-performance computing data-
centers,” Future Gener. Comput. Syst., vol. 71, pp. 157–170, 2017.

[32] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading tasks
with dependency and service caching in mobile edge computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 11, pp. 2777–2792,
Nov. 2021.

[33] R. V. Lopes and D. Menasc�e, “A taxonomy of job scheduling on
distributed computing systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 12, pp. 3412–3428, Dec. 2016.

[34] M. Hirono, T. Sato, J. Matsumoto, S. Okamoto, and N. Yamanaka,
“HOLST: Architecture design of energy-efficient data center net-
work based on ultra high-speed optical switch,” in Proc. IEEE Int.
Symp. Local Metrop. Area Netw., 2017, pp. 1–6.

[35] D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan, “Generic external
memory for switch data planes,” in Proc. 17th ACM Workshop Hot
Top. Netw., 2018, pp. 1–7.

[36] L. Phan, B. Hu, and C.-X. Lin, “An evaluation of turbulence and
tile models at server rack level for data centers,” Building Environ.,
vol. 155, pp. 421–435, 2019.

[37] J. Hartmanis, “Computers and intractability: A guide to the theory
of NP-completeness,” Siam Rev., vol. 24, no. 1, 1982, Art. no. 90.

[38] K. Makarychev and Y.Makarychev, “Nonuniform graph partitioning
with unrelated weights,” in International Colloquium Automata Lan-
guages Programming. Berlin, Germany: Springer, 2014, pp. 812–822.

[39] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “On the effect of
forwarding table size on SDN network utilization,” in Proc. IEEE
Conf. Comput. Commun., 2014, pp. 1734–1742.

[40] M. Mastrolilli and G. Stamoulis, “Bi-criteria and approximation
algorithms for restricted matchings,” Theor. Comput. Sci., vol. 540,
pp. 115–132, 2014.

[41] J. B. Orlin, “Duality in linear programming,” [Online]. Available:
http://web.mit.edu/15.053/www/AMP-Chapter-04.pdf

[42] H. Wang, H. Xu, H. Huang, M. Chen, and S. Chen, “Robust task
offloading in dynamic edge computing,” IEEE Trans. Mobile Com-
put., to be published, doi: 10.1109/TMC.2021.3068748.

[43] “Google cluster-data,” 2019. [Online]. Available: http://github.
com/google/cluster-data

[44] “vnStat,” 2021. [Online]. Available: http://osrg.github.io/ryu/
[45] I. Vaccari, M. Aiello, and E. Cambiaso, “Slowite, a novel denial of

service attack affecting MQTT,” Sensors, vol. 20, no. 10, 2020,
Art. no. 2932.

[46] “hping,” 2021. [Online]. Available: http://hping.org/
[47] P. Hosseinioun, M. Kheirabadi, S. R. Kamel Tabbakh, and R. Ghaemi,

“Atask scheduling approaches in fog computing: A survey,” Trans.
Emerg. Telecommun. Technol., vol. 33, 2020,Art. no. e3792.

[48] M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, “A comprehen-
sive survey for scheduling techniques in cloud computing,” J.
Netw. Comput. Appl., vol. 143, pp. 1–33, 2019.

[49] B. Wang, C. Wang, Y. Song, J. Cao, X. Cui, and L. Zhang, “A sur-
vey and taxonomy on workload scheduling and resource provi-
sioning in hybrid clouds,” Cluster Comput., vol. 23, no. 4,
pp. 2809–2834, 2020.

[50] B. Saha, “Green computing: Current research trends,” Int. J. Com-
put. Sci. Eng., vol. 6, no. 3, pp. 467–469, 2018.

[51] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and X. Du, “POCLib: A high-
performance framework for enabling near orthogonal processing
on compression,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 2,
pp. 459–475, Feb. 2022.

[52] A. Shieh, S. Kandula, A. G. Greenberg, and C. Kim, “Seawall: Per-
formance isolation for cloud datacenter networks,” in Proc. 2nd
USENIX Conf. Hot Top. Cloud Comput., 2010, pp. 1–7.

[53] B. Arzani et al., “PrivateEye: Scalable and privacy-preserving
compromise detection in the cloud,” in Proc. 17th USENIX Symp.
Netw. Syst. Des. Implementation, 2020, pp. 797–815.

[54] G. Ho, A. Sharma, M. Javed, V. Paxson, and D. Wagner, “Detecting
credential spearphishing in enterprise settings,” in Proc. 26th USE-
NIX Secur. Symp., 2017, pp. 469–485.

Huaqing Tu (Student Member, IEEE) is currently
working toward the PhD degree in computer
science with the University of Science and Tech-
nology of China. Her main research interests
include software-defined networks, network func-
tion virtualizatioin, and cloud computing.

Gongming Zhao (Member, IEEE) received the
PhD degree in computer software and theory from
the University of Science and Technology of China,
in 2020. He is currently an associate professor with
the University of Science and Technology of China.
His current research interests include software-
defined networks and cloud computing.

Hongli Xu (Member, IEEE) received theBSdegree
in computer science and the PhD degree in com-
puter software and theory from the University of
Science and Technology of China, China, in 2002
and 2007, respectively. He is currently a professor
with the School of Computer Science and Technol-
ogy, University of Science and Technology of China
(USTC). He has published more than 100 articles
in famous journals and conferences, including
IEEE/ACM Transactions on Networking, IEEE
Transactions onMobile Computing, IEEETransac-

tions on Parallel and Distributed Systems, International Conference on
Computer Communications (INFOCOM), and International Conference on
Network Protocols (ICNP). He has heldmore than 30 patents. His research
interests include software defined networks, edge computing, and the
Internet of Things. He was awarded the Outstanding Youth Science Foun-
dation ofNSFC in 2018.Hehaswon the best paper award or the best paper
candidate in several famous conferences.

Xianjin Fang received the PhD degree in com-
puter application technology from Anhui Univer-
sity, in 2010. He is currently a professor and a MS
Supervisor with the Anhui University of Science
and Technology. His research interests include
information security and data mining.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

TU ETAL.: TENANT-GRAINED REQUEST SCHEDULING IN SOFTWARE-DEFINED CLOUD COMPUTING 4671

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:39 UTC from IEEE Xplore. Restrictions apply.

http://web.mit.edu/15.053/www/AMP-Chapter-04.pdf
http://dx.doi.org/10.1109/TMC.2021.3068748
http://github.com/google/cluster-data
http://github.com/google/cluster-data
http://osrg.github.io/ryu/
http://hping.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

